
Notes on the architecture, design, and data processes in openFDA

OpenFDA uses cutting edge technologies and is a pilot	  for how FDA can develop and deploy

novel applications in the public cloud securely and efficiently in the future. In these notes,	  we

provide a high-‐level plain language description of the logical architecture, data	  sources, data	  

processing, data	  harmonization, and website technologies.

Logical Architecture

The architecture and technology were chosen to make openFDA scalable; quickly responsive;

transferable to new technologies as they mature; easily accessible by application developers,

researchers, and the general public; and transparent. The data	  are on the cloud that	  has been

approved for federal use (Amazon Web Services East).1 The figure shows openFDA is built	  using

modern, open standards and leveraging open source and cloud technologies. The system uses

modules that	  work together or in sequence and can be transparently replaced as technology

improves. The target	  consumers are other applications that	  use openFDA; applications can

query openFDA in the form of Uniform Resource Locators (URLs). Of course, researchers and

the general public can create and run queries, as well.



Figure. openFDA	  logical architecture.

OpenFDA is hosted in one of the secure cloud environments approved for federal use (Amazon

Web Services US-‐East)1 and uses Amazon Elastic Compute Cloud (EC2).2 All of the content	  and

data	  are encrypted to be read-‐only by the public. The platform is transportable to different	  

cloud environments since it	  is deployed within a Docker container,3 a complete file system that	  

contains everything it	  needs to run the software. In addition, the data	  is portable to other

software. Node.js is used within Docker as the open	  source,	  cross-‐platform runtime	  

environment for server-‐side and networking applications.	   Node.js, using JavaScript, enables the



creation of highly scalable fast	  webservers, has a simple and elegant	  programmer interface, and

has a large library of open source modules.4

Git, a source control system, is used during the development	  and modification of any of the

openFDA content	  (data	  processing steps, analysis code, encryption protocols, and settings for

the other modules). All of the code is copied into the independent	  GitHub Source Code

Repository for openFDA.5 GitHub is a popular repository for open source code.

The public data	  are regularly drawn from	  public	  FDA	  files. Luigi Python (the open source

version created by Spotify to handle massive volumes of digitized music)6 and Elasticsearch7 are

both used to prepare and load the data.	   Python manages the workflow of data	  and software

modules. Elasticsearch is a fast, scalable, full text	  JSON (see next	  sentence) database built	  upon

the open source Lucene project	  that	  has an easy to use RESTful API	  (see next	  paragraph). The

final form of each dataset	  is JavaScript	  Object	  Notation (JSON), an open standard data	  format	  

that	  is independent	  of programming language and supported by many programming languages,	  

R.8-‐9 including Python, JavaScript, and All of the openFDA content	  is stored in Amazon Simple

Storage Service (S3).10

The Application Programming Interfaces (APIs) contain the automation for accessing and using

the data.11 They are Representational State Transfer (REST) type, to take advantage of

modularity of the code, the ability to cache queries and responses, the ability to layer services,

and scalability.12

http:scalability.12


 

Queries are written in Lucene query syntax13 . All queries begin with “https://api.fda.gov/” and

go on to specify the database API	  name and then the search or count	  specifications. The path

for queries is represented with solid lines in the figure.	   API	  Umbrella14 is an open source tool

that	  keeps track of query statistics,	  and administers the free user-‐specific API	  keys that	  allow

heavy use. API	  Umbrealla	  receives the incoming query and fetches the results. If the query is a

duplicate, the response is found in API	  Umbrella’s historical query cache. Otherwise, Node.js	  

and Elasticsearch are used to search and analyze the specified JSON dataset	  in cloud storage

using real-‐time distributed methods. The load balancer balances all the jobs.15 OpenFDA has

been able to handle over 100 requests per second across millions of records, which are all built	  

in an open source environment	  and can be adopted for other public health big data	  challenges.

StackExchange hosts questions, answers, and discussions related to openFDA. 16 

Data Source	  Details 

Four main data	  sources are currently available in openFDA: adverse event	  reports for drugs and

devices, recall reports for all products, and drug labeling.

•	 Drug	  adverse	  event reports includes approximately five million publicly available drug

adverse event	  and medication error reports, of which almost	  1.2 million reports are from

2013.17 Since 2004, FDA has published online quarterly drug adverse reaction reports from

the FDA Adverse Event	  Reporting System (FAERS).18-‐19 The files listed on this webpage

http:https://api.fda.gov/�	�


 

 

 

contain raw data	  extracts for the indicated time ranges, are not	  cumulative, and require

reconstruction into a relational database. The historical files are in Standardized General

Markup (SGM) format	  and the current	  ones are in Extensible Markup Language (XML). Part	  

of processing the files requires preserving only the most	  recent	  record of a particular

reported incident. LevelDB software20 is used to do the filtering; LevelDB (with Snappy21 

compression, a fast	  data	  compression and decompression library) is compatible with

Node.js, C++, and Python.

•	 Safety report	  data	  contain semi-‐structured information about	  recalls, market	  withdrawals

and safety alerts of FDA-‐regulated products archived in the Recall Enterprise System (RES)22 

since 2012. Recalling defective or dangerous products, by removing them from the market	  

or correcting the problem, is one of the ways of protecting the public.23 FDA provides	  

various ways to access the recalls data, including an RSS feed, a Flickr stream, a search

interface, weekly downloadable XML files (the ones used by openFDA), and weekly

downloadable CSV	  files. The openFDA API	  provides a new option for easy and fast	  access. 24 

•	 Labeling data	  are composed of the updated Structured Product	  Labeling (SPL) data	  for

68,000 currently approved drugs. The labeling contains information necessary to inform

healthcare providers about	  the safe and effective use of the drug for its approved use(s).25 

The FDA SPL staff make the updated SPL files in XML format available to the openFDA staff

in parallel to sending them to the National Library of Medicine, where they are available to

the public.26 

•	 Medical device adverse event reports include over 4 million reports of serious injuries,

deaths, and device malfunctions, from 1991 to the present. In recent	  years, the

http:public.26
http:use(s).25
http:public.23


Manufacturer and User Facility Device Experience (MAUDE) has been receiving several

hundred thousand reports per year. The source is the public downloadable	  version of

MAUDE,	  which is in multiple zip files composed of pipe-‐delimited text	  files that	  require

reconstruction into a relational database.27 

Processing	  of	  the	  Source	  Data

The public data	  sources are converted to flat	  JSON files. Both of the adverse event	  report	  

source databases are	  in relational flat	  tables that	  are processed in openFDA to each form a

large flat	  file with long records. The labelling source data	  are in XML format, with varying levels

of hierarchy used for different	  records; the new flat	  table of records had to be designed after

exploration of the extent	  of hierarchy in different	  sections of the individual records.

The recall reports source files are also in XML format	  that	  the openFDA process converts to a

flat	  file.

Relational databases were popular for the last	  several decades because storage was relatively

expensive. However, the complexity of relational databases raises the risk of inaccurate

analysis strategies. Software designed for big data	  has made it	  feasible to quickly execute

search and analysis commands on very large flat	  files.

Harmonization	  Process

http:database.27


 

 

 

 

To address issues related to differences in the structure of the three drug databases (adverse

event	  reports, recalls, and labeling), openFDA features harmonization on drug identifiers

(generic name, brand name, etc), to make it	  easier to both search for and understand the drug

products returned by API	  queries. The additional “harmonization”, or “openFDA”, fields	  are

created from the following four databases:

•	 NDC Directory.28 OpenFDA uses application number, brand name, dosage form, generic

name, manufacturer name, original packager indicator, NDC, type of drug product,

route of administration, and active ingredients.

•	 SPL-‐Pharmacological Class Mappings.29 OpenFDA uses all four types of pharmacologic

class: mechanism of action, chemical structure, physiological effect, and approved

indication class.

•	 SPL-‐RxNorm Mappings.30 Synonym drug names are grouped into RxNorm “concepts”,

and connected NDC, other drug names, ingredients, manufacturer, and pill attributes.

OpenFDA uses the RxNorm Concept	  Unique Identifier that	  incorporates the drug

concept, ingredients, strength, and dosage	  forms.

•	 Substance Registration System.31 OpenFDA uses the Unique Ingredient	  Identifier.

The harmonized openFDA fields are then added to any record in the recalls, drug adverse event	  

reports, and SPL flat	  files that	  match a field in the harmonization database. For recalls of drugs,

the names of drugs and manufacturers, as well as NDC or UPC codes, were generally provided

in free-‐text	  fields with other text. Regular expression-‐based extractors were built	  to identify

this information for harmonization.

http:System.31
http:Mappings.30
http:Mappings.29
http:Directory.28


Website Technology

The design of the open.fda.gov website draws on best	  practices in agile development, intuitive

user experience, and data	  visualization. Its aim is to provide a unified, consistent	  presentation

for all datasets to facilitate ease of learning both about	  the APIs and the datasets themselves.

The site is organized thematically around broad data	  types (drugs, devices, and foods), rather

than around datasets or FDA’s internal organization. This scheme is deliberate, in order to more

closely align with website users' mental models of FDA data. The website is characterized by a

combination of interactive programmer-‐oriented example queries, visualizations, and examples

that	  explain the nature of the data	  and how to use the query syntax and JSON results. Unlike

most	  API	  websites, it	  recognizes that	  non-‐technical members of the public have an interest	  in

these data, and employs the design principle of progressive disclosure to provide multiple

layers of information depth. Interactive data	  visualizations and examples, with plain language

annotation, are oriented towards members of the public but	  usable by both programmer and

non-‐programmer users of the website. Plain, straightforward language is used throughout,

including in field-‐by-‐field documentation of the JSON results for each API	  endpoint.

The website was designed in an iterative fashion, incorporating feedback from both internal

and external stakeholders. Since its launch, changes have been made to clarify documentation

in response to feedback from the open source community.



Publicly available data	  provided through openFDA are in the public domain with a CC0 Public

Domain Dedication32. The website was built	  with open source software:	  Jekyll for	  overall

structure,33 Bootstrap for responsive design including mobile compatibility,34 Grunt	  for

optimizing JavaScript,35 and LESS/CSS36 and D337 and C338 for data	  visualization.

Conclusion

OpenFDA brings a new model of big data	  search and analytics across disparate and complex	  

sources by simplifying dataset	  structures and using modular open source technology.

By: Taha A. Kass-‐Hout, MD, Roselie A. Bright, ScD, Adam Baker



 

 

 

 

 

 

 

 

 

References

1.	 FedRAMP Compliant	  Systems. FedRAMP, US General Services Administration.

https://www.fedramp.gov/marketplace/compliant-‐systems/. Accessed in July	  2015.

2.	 Amazon EC2. Amazon. 2015.

http://aws.amazon.com/ec2/?sc_channel=PS&sc_campaign=acquisition_US&sc_publish 

er=bing&sc_medium=ec2_b&sc_content=ec2_bmm&sc_detail=+amazon%20+ec2&sc_c 

ategory=ec2&sc_segment=7005634148&sc_matchtype=p&sc_country=US&s_kwcid=AL! 

4422!10!7005634148!50080015136&ef_id=VLAuEwAABfo1-‐Hwu:20150717225734:s.

Accessed in July	  2015.

3.	 Build, Ship, Run. Docker, Inc. https://www.docker.com/. Accessed in July	  2015.

4.	 Node.js. Node.js Foundation. 2015.	  https://nodejs.org/. Accessed in July	  2015.

5.	 FDA/openFDA.	   GitHub, Inc. 2015.	   https://github.com/FDA/openfda. Accessed	  in July	  

2015.

6.	 Luigi.	  Python Software Foundation. 2014.	  https://pypi.python.org/pypi/luigi. Accessed	  

in July	  2015.

7.	 Elasticsearch: Search & Analyze Data	  in Real Time. Elasticsearch. 2015.	  

https://www.elastic.co/products/elasticsearch. Accessed in July	  2015.

8.	 Introducing JSON. JSON. http://json.org. Accessed in July	  2015.

9.	 The R Project	  for Statistical Computing. The R Foundation. http://www.r-‐project.org/.

Accessed in July	  2015.

http:http://www.r-�-project.org/.	�
http:http://json.org.	�
https://www.elastic.co/products/elasticsearch.	�
https://pypi.python.org/pypi/luigi.	�
https://github.com/FDA/openfda.	�
http:https://nodejs.org/.	�
http:https://www.docker.com/.	�
http://aws.amazon.com/ec2/?sc_channel=PS&sc_campaign=acquisition_US&sc_publish
https://www.fedramp.gov/marketplace/compliant-�-systems/.	�


 

 

 

 

 

 

 

 

 

10. Amazon Simple Storage Service Developer Guide. AWS Documentation. 2015.	  

http://docs.aws.amazon.com/AmazonS3/latest/dev/Welcome.html. Accessed in July	  

2015.

11. Orenstein D. Application Programming Interface. Computerworld. January 10, 2000.

http://www.computerworld.com/article/2593623/app-‐development/application-‐

programming-‐interface.html. Accessed in July	  2015.

12. Kay R. Representational State Transfer (REST). Computer World. August	  6, 2007.

http://www.computerworld.com/article/2552929/networking/representational-‐state-‐

transfer-‐-‐rest-‐.html. Accessed in July	  2015.

13. Lucene.	  Apache Software Foundation. June 21, 2013.	  

https://lucene.apache.org/core/2_9_4/queryparsersyntax.html. Accessed in July	  2015.

14. API	  Umbrella. http://apiumbrella.io/. Accessed in July	  2015.

15. Elastic Load Balancing. Amazon Web Services. Aws.amazon.com/elasticloadbalancing/. 

Accessed in	  July 2015. 

16. StackExchange. http://stackexchange.com/search?q=openFDA. Accessed in July	  2015.

17. Reports Received and Reports Entered into FAERS by Year. Food and Drug	  

Administration. August	  6, 2014.

http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/Ad 

verseDrugEffects/ucm070434.htm in July 2015. Accessed in July	  2015.

18. The Adverse Event	  Reporting System (AERS): Older Quarterly Data	  Files. Food and Drug	  

Administration. August	  15, 2013.

http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/Ad
http://stackexchange.com/search?q=openFDA.	�
http://apiumbrella.io/.	�
https://lucene.apache.org/core/2_9_4/queryparsersyntax.html.	�
http://www.computerworld.com/article/2552929/networking/representational-�-state
http://www.computerworld.com/article/2593623/app-�-development/application
http://docs.aws.amazon.com/AmazonS3/latest/dev/Welcome.html.	�


 

 

 

 

 

 

 

http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/Ad
 

verseDrugEffects/ucm083765.htm. Accessed in July	  2015.

19. FDA Adverse Event	  Reporting System (FAERS): Latest	  Quarterly Data	  Files. Food and

Drug Administration. June	  16, 2015.

http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/Ad 

verseDrugEffects/ucm082193.htm . Accessed in July	  2015..

20. LevelDB.	   LevelDB. http://leveldb.org/. Accessed in July	  2015.

21. Snappy: a fast	  compressor/decompressor. Google Project	  Hosting.

http://code.google.com/p/snappy/. Accessed in July	  2015.

22. Enforcement	  Reports. Food and Drug Administration. July 15, 2015.	  

http://www.fda.gov/Safety/Recalls/EnforcementReports/default.htm. Accessed in July	  

2015.

23. FDA 101: Product	  Recalls – From First	  Alert	  to Effectiveness Checks. Food and Drug	  

Administration. Updated April 29, 2015.

http://www.fda.gov/ForConsumers/ConsumerUpdates/ucm049070.htm. Accessed in

July	  2015.

24. Kass-‐Hout	  T. OpenFDA provides ready access to recall data. Food and Drug	  

Administration. August	  8, 2014. https://open.fda.gov/update/openfda-‐provides-‐ready-‐

access-‐to-‐recall-‐data. Accessed in July	  2015.

25. Kass-‐Hout	  T. Providing easy public access to prescription drug, over-‐the-‐counter drug,

and biological product	  labeling. Food and Drug Administration. August	  18,	  2014.

https://open.fda.gov/update/drug-‐product-‐labeling/. Accessed in July	  2015.

https://open.fda.gov/update/drug-�-product-�-labeling/.	�
https://open.fda.gov/update/openfda-�-provides-�-ready
http://www.fda.gov/ForConsumers/ConsumerUpdates/ucm049070.htm.	�
http://www.fda.gov/Safety/Recalls/EnforcementReports/default.htm.	�
http://code.google.com/p/snappy/.	�
http:http://leveldb.org/.	�
http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/Ad
http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/Ad


 

 

 

 

 

 

26. DailyMed. National Library of Medicine, US National Institutes of Health.

http://dailymed.nlm.nih.gov/dailymed/. Accessed in July	  2015.

27. Manufacturer and User Facility Device Experience Database – (MAUDE). Food and Drug	  

Administration. May 7, 2015.

http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/PostmarketRequire 

ments/ReportingAdverseEvents/ucm127891.htm. Accessed in July	  2015.

28. National Drug Code Database Background Information. Food and Drug Administration.

June	  14, 2012.

http://www.fda.gov/drugs/developmentapprovalprocess/ucm070829.htm. Accessed in

July	  2015.

29. SPL Resources: Download all mapping files. National Library of Medicine, US National

Institutes of Health. http://local-‐dailymed.nlm.nih.gov/dailymed/spl-‐resources-‐all-‐

mapping-‐files.cfm. Accessed in July	  2015.

30. RxNorm Overview. National Library of Medicine, US National Institutes of Health.

January 5, 2015. http://www.nlm.nih.gov/research/umls/rxnorm/overview.html.

Accessed in July	  2015.

31. UNII	  List	  Download. Substance Registration System – Unique Ingredient	  Identifier (UNII).

National Library of Medicine, US National Institutes of Health. Updated March 2015.

http://fdasis.nlm.nih.gov/srs/jsp/srs/uniiListDownload.jsp. Accessed in July	  2015.

http://fdasis.nlm.nih.gov/srs/jsp/srs/uniiListDownload.jsp.	�
http://www.nlm.nih.gov/research/umls/rxnorm/overview.html.	�
http://local-�-dailymed.nlm.nih.gov/dailymed/spl-�-resources-�-all
http://www.fda.gov/drugs/developmentapprovalprocess/ucm070829.htm.	�
http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/PostmarketRequire
http://dailymed.nlm.nih.gov/dailymed/.	�


 

 

 

 

 

 

 

32. Creative Commons Corp., CCO 1.0 Universal.

https://creativecommons.org/publicdomain/zero/1.0/legalcode Accessed in July	  2015.

33. Preston-‐Werner T. Transform your plain text	  into static websites and blogs. Jeckyll.

2015. Jekyllrb.com/. Accessed in July	  2015.

34. Bootstrap. Bootstrap. Getbootstrap.com/. Accessed in July	  2015.

35. GRUNT The JavaScript	  Task Runner. Gruntjs. Gruntjs.com/. Accessed in July	  2015.

36. Getting started. LESS/CSS. Lesscss.org/#. Accessed in July	  2015.

37. D3: Data-‐Driven Documents. D3js. D3js.org/. Accessed in July	  2015.

38. Tanaka	  M. C3.js: D3-‐based reusable chart	  library. C3js. 2014.	  C3js.org/. Accessed in

July	  2015.

http:C3js.org/.	�
http:D3js.org/.	�
http:Lesscss.org/#.	�
http:Gruntjs.com/.	�
http:Getbootstrap.com/.	�
http:Jekyllrb.com/.	�
https://creativecommons.org/publicdomain/zero/1.0/legalcode	�

